The current prediction for Sunspot Cycle 24 gives a smoothed sunspot number maximum of about 75 in the Fall of 2013. The smoothed sunspot number (for 2012/02) is already nearly 67 due to the strong peak in late 2011 so the official maximum will be at least this high. We are currently well over three years into Cycle 24. The current predicted and observed size makes this the smallest sunspot cycle since Cycle 14 which had a maximum of 64.2 in February of 1906.The latest prediction graph from http://solarscience.msfc.nasa.gov/images/ssn_predict_l.gif
6 Oct 2012
Latest sunspot news
The latest from NASA:
Charity jazz concert, Oxford Sunday Oct 7th
Final
reminder: Tim Lapthorn Trio (jazz) at the Jacqueline du Pre Music
Building, St Hilda's College, Oxford this Sunday at 1pm. Concert is
raising funds for multiple sclerosis research. Tickets from http:// www.oxfordplayhouse.com/ ticketsoxford/ index.aspx?catid=24
or on the door. Good music, good cause. Please come if you can to support it.
Tim in one of his many appearances at Ronnie Scott's in London |
My son Tim is a world class professional jazz pianist - see www.timlapthorn.com/ - and he is launching his new CD called "Transport" available later this month. Proceeds from the concert will got to the MS Society.
If you cannot attend and want to make a donation to MS, please email me. Samples of his music available on his website.
Labels:
jazz,
tim lapthorn,
timlapthorn.com
Over-the-horizon on 480THz
My order for 3 off 12W red LEDs known as PT54 Phlatlights has arrived. These are VERY VERY bright LEDs mounted onto substantial heatsinks which emit a strong signal on 480THz. They were originally intended for portable projection systems. One of mine is going into my QRO optical beacon running continuous carrier, CW, DFCW, QRSS3 or QRSS30 to use in further over the horizon (non line-of-sight) beaconing tests using the scatter from particles in clear air and the reflection off the base of clouds. Last winter my own simple beacon running at around 300mW was detected several km over the horizon using QRSS3. G4HJW's optical beacon using a Phlatlight LED was detectable in my village some 8-9km over the horizon. In neither case could the red glow from the TX be detected by eye. This week I also received some SFH213 10 degree half angle PIN photodiodes which should be considerably more sensitive than my BPW34 detectors currently in use. Estimates suggest at least 6dB more sensitivity.
Together, the QRO optical beacon running from home, focussed with a 100mm lens (gain about 24-30dB), and a portable high sensitivity 100mm lens based detector should allow plenty of scope for innovative NLOS tests on dark winter evenings.
Just realised: 5W out (for example) into a 30dB gain lens "antenna" is equivalent to 5kW of light power in the beam. That is SOME bright light. Clearly great care is needed in siting and aiming such a system to ensure safety.
Together, the QRO optical beacon running from home, focussed with a 100mm lens (gain about 24-30dB), and a portable high sensitivity 100mm lens based detector should allow plenty of scope for innovative NLOS tests on dark winter evenings.
Just realised: 5W out (for example) into a 30dB gain lens "antenna" is equivalent to 5kW of light power in the beam. That is SOME bright light. Clearly great care is needed in siting and aiming such a system to ensure safety.
Labels:
beacon,
nlos,
optical,
phlatlight
4 Oct 2012
New soldering iron needed
My old Weller soldering iron station (an old Pye Telecom chuck-out from about 1980) is on its very last legs - it is physically cracked and really does need replacing. You can tell how old it is by the mains wire colours! It was possibly the one I had on my bench when I started work in 1970.
I'm looking at the Maplin soldering iron range for a replacement, which look good value. Most of my work is with discrete parts but increasingly some SMA parts are being used too. Up to now I have been using up my stock of tin-lead solder, but am happy to move to lead free.
So, please may I have your recommendation on what soldering iron to go for?
I don't mind spending a bit more if by doing so I get a more reliable soldering station. Clearly replacement tips must be available inexpensively.
I'm looking at the Maplin soldering iron range for a replacement, which look good value. Most of my work is with discrete parts but increasingly some SMA parts are being used too. Up to now I have been using up my stock of tin-lead solder, but am happy to move to lead free.
So, please may I have your recommendation on what soldering iron to go for?
I don't mind spending a bit more if by doing so I get a more reliable soldering station. Clearly replacement tips must be available inexpensively.
Labels:
maplin,
soldering iron,
weller
3C90 cores at 8.97kHz
The output of my TDA2003 based VLF earth-mode transmitter is around 5W into 4 ohms. The new semi-permanent earth mode "antenna" just installed measured at around 50-60 ohms resistive at 8.97kHz. I used an AC potential divider technique to check this. Today I wound a small 3C90 based transformer using the advice I got from various people yesterday and it works very well, matching the TDA2003 perfectly to the earth electrode pair. I managed to destroy my K1EL message keyer's 5V regulator (and the keyer IC too!) so a rebuild is required before I go out into the field again to do some RX measurements. All being well these new tests will start in the next few days.
My SFH213 PIN photodiodes arrived today and my 12W Phlatlight LEDs are due next week. I'd better crack on with the new VLF earth-mode tests before these arrive as I will want to try some over-the-horizon 481THz tests with the more powerful optical transmitter and more sensitive detectors.
My SFH213 PIN photodiodes arrived today and my 12W Phlatlight LEDs are due next week. I'd better crack on with the new VLF earth-mode tests before these arrive as I will want to try some over-the-horizon 481THz tests with the more powerful optical transmitter and more sensitive detectors.
Labels:
3c90. vlf,
earth mode
More on LF transformers
Following on from the earlier blog entry about using a 3C90 core for a VLF and LF transformer, I got this reply from Jim M0BMU last night on the RSGB LF Yahoo group. I post it here as it contains some useful additional information. See also the mini-Ring Core Calculator from DL5SWB at http://dl5swb.de/ .
"Dear Roger, Andy, LF Group,
>> Four turns minimum for 137kHz 25 Watts. 60 or so for 9kHz
> Yes these values look quite practical ones.
...But now the inductance of the winding and AL value of the core do become important. (BTW, the value of 2000 is the relative permeability of the 3C90 material. The "inductance factor" AL, the "inductance per turn-squared", is a different number which depends on the shape and size of the core as well as the permeability.) AL for this core is given as 2690nH nominally. With a four turn winding, the resulting L is about 43uH, with a reactance of only 37ohms at 137k. In a 50 ohm circuit, this will cetainly mess things up a bit. As a general rule, you would probably like the reactance of the 50ohm winding to be at least 250ohms at the operating frequency. This requires an inductance of more than 290uH, so a winding of 11 turns minimum will be needed for a 50ohm impedance level.
This is a typical result when using a core that is much larger than what is required by power handling considerations - the number of turns needed to keep the flux down to an acceptable level becomes so small that the inductance becomes the deciding factor. It also obviously makes it tricky to match to low impedances, which is often what you are trying to do in a PA or
loop-matching transformer - you may well find that you end up with windings of less than 1 turn! In these cases the inductance or the required turns ratio becomes the determining factors. In the more normal situation where you are trying to design a transformer with an economically-sized core for a given power level, the inductance is usually large enough not to be an issue, as Andy stated.
At 9kHz however, the 60turn winding is quite reasonable from the inductance point of view, giving 9.7mH and about 550ohm reactance. Also, the core losses would be lower at 9kHz, so you could allow a higher flux density and reduce the number of turns (or increase the power level, which might be better!)
Cheers, Jim Moritz
73 de M0BMU"
Labels:
3c90,
lf,
toroid,
transformers,
vlf
Azores Islands
This evening I switched on the FT817 not expecting to work anyone on 10m when I heard CU7AA, Faial Island in the Azores archipelago, calling CQ on 28.520MHz. A quick single call and he came back to me with a 57 report on SSB. Although I've worked the Azores several times, including on 6m QRP, this is the first time I've worked Faial Island I think
3 Oct 2012
On-line LF toroid transformer design tool?
I have some 42mm diameter 3C90 toroids and want to use these in output transformers in 3 applications:
(1) in the output of a 137kHz (up to) 25W transmitter
(2) in the output of an 8.97kHz (up to) 25W transmitter
(3) as an impedance transformer for a TX loop antenna at 8.97, 137 and 500kHz.
I was looking for an on-line calculator to help me work out secondary turns needed, but could not find one. Andy G4JNT helped with this input:
As an aside, I use http://www.66pacific.com/calculators/toroid_calc.aspx very often to work out the turns needed for the common HF toroids such as T37-x and T50-x.
(1) in the output of a 137kHz (up to) 25W transmitter
(2) in the output of an 8.97kHz (up to) 25W transmitter
(3) as an impedance transformer for a TX loop antenna at 8.97, 137 and 500kHz.
I was looking for an on-line calculator to help me work out secondary turns needed, but could not find one. Andy G4JNT helped with this input:
To aid calculations in future I have produced a small spreadsheet to work out the secondary turns from the input data (freq, cross sectional area and RF power out)."The magic equation is Vrms = 4.44.F.N.A.B all in SI units.rearranged Nmin = V / (4.44 . F . A . B)Al is irrelevant for transformers.Use a Bmax of 0.1 Tesla for Ferrites, allowing a decent safety margin.Your A (of 25 mm^2) = 25*10^-6 , F = 137000,25W in 50 ohms is 35V"
As an aside, I use http://www.66pacific.com/calculators/toroid_calc.aspx very often to work out the turns needed for the common HF toroids such as T37-x and T50-x.
Labels:
3c90,
toroid,
transformer
2 Oct 2012
A return to earth-mode VLF experiments
This afternoon I installed a more permanent earth-mode ground system to use in forthcoming tests at VLF through to 500kHz. Instead of bringing the 2 earth connections into my upstairs shack, as I had done previously, I have now installed a couple of grounds and wires that come into my "designing" shack downstairs. This means I can now run a lot more tests using the test equipment at my disposal. It also means I do not tie up equipment in my "operating" shack upstairs when doing earth mode beaconing.
The diagram shows the current arrangement of the grounds and wire. At its highest point the wire is 1.5m above ground, running along the back garden fence. It is invisible.
Tomorrow I hope to get the ULF/VLF earth-mode beacon TX on-air initially on 8.97kHz and 1.147kHz in QRSS3 and QRSS30 and carry out my usual reception test at a point 1.6km from home where the signal is usually strong. Subject to satisfactory results with the new TX "antenna" I then intend to do a series of RX tests using new equipment out to around 10km from home.
Tomorrow I hope to get the ULF/VLF earth-mode beacon TX on-air initially on 8.97kHz and 1.147kHz in QRSS3 and QRSS30 and carry out my usual reception test at a point 1.6km from home where the signal is usually strong. Subject to satisfactory results with the new TX "antenna" I then intend to do a series of RX tests using new equipment out to around 10km from home.
Labels:
earth electrodes,
earth mode,
vlf
The OXO QRP transmitter
OXO schematic on the G3PTO website |
One of the most simple and popular HF transmitters is the OXO, originally design by GM3OXX. The circuit appeared in the GQRP club's SPRAT magazine about 30 years ago. It is essentially a 2 transistor QRP transmitter (plus another for keying) capable of working as a fundamental crystal controlled or VXO controlled transmitter on an HF band. I used this design as the TX part of my Pipit 800mW transceiver for 15m and later the Tenner transceiver for 10m. On the higher bands there is more chance of a little chirp, but perfectly usable. On the lower HF bands the OXO is capable of over 1W. It is a very easy transmitter to build, is almost guaranteed to work first time, and is great fun to use.
As it is some time since I've built one, I might just knock one up this afternoon and see how I get on, perhaps on 80m or 40m CW.
Subscribe to:
Posts (Atom)