Showing posts with label red. Show all posts
Showing posts with label red. Show all posts

5 Feb 2015

Radio Equipment Directive (RED)

See https://www.gov.uk/government/consultations/radio-equipment-directive-proposal .

Quite soon this new directive will apply in Europe including the UK. Many low cost modules may cost a little more as receivers will need to be more carefully designed to meet RED requirements. It is likely that more stringent RX parameters will have to be met. I wonder if some of the very low module costs are as a result of the dumping of old stock? This could well impact super-regen receivers that are sensitive, but not very selective. Although fine in some markets this type of receiver is less than ideal in a very busy ISM band where they could easily be blocked.  Listening around 433.92MHz recently, very many ISM devices could be copied.  One of my old colleagues is involved in international committees working on RED.

The "internet of things" means very many devices will include radios in future, such as a basic internet terminal in washing machines or RFID tags.

6 Mar 2013

Frustrating day at both ends of the spectrum

Today I tried two experiments. Firstly a continuation of my tests with the loop and E-field probe out in the fens on 8.977kHz and then tonight, another over-the-horizon test on 481THz.

Failure 1 at VLF: whereas in the past I've had a decent signal at my test site at Tubney Fen 3.5km from home on the loop antenna on 8.977kHz, today I could copy nothing. There was some strong interference and I thought that may have been the problem, so I moved on to a second test site 5km away where again I usually get a good signal. Again nothing. In the past this second site has given me signals so strong that I could copy 10wpm CW from home on 1kHz by earth mode. Now around the village and in nearby Swaffham Prior the signal levels were (as far as I can recall) similar to past levels, so what has changed? One theory is that the wet winter has saturated the fenland soil so conductivity is much higher, resulting in much higher attenuation at VLF.  Another possibility is some utility has changed - a change of pipe type or a re-routing of an electricity cable? My TX and RX equipment is largely the same as in previous tests.

Optical QRM on the 820Hz sub-carrier frequency
Failure 2 at 481THz: I tried a third attempt at my over-the-horizon QRSS3 reception of my signal on a 820Hz sub-carrier. This has been successful in the past. The 100mm lens TX was carefully aligned just to the right of our local windmill on "the hill" and I traveled to what should have been a direct line path (but over the horizon so the signal has to be scattered) about 3.5km away. Optical conditions looked good with clear visibility of street lights in Burwell. Well, I am pretty certain that I was able to hear my signal by ear in the headphones keying away slowly, but because of a lead failure (later fixed) and then a strong interfering signal very close to the 820Hz sub-carrier, I failed to see my signal with Spectran and make a screen capture. I think this QRM signal is related to new street lighting as panning the horizon brought up this interference on most street lights at around 3km range. The solution will be to choose a different sub-carrier tone frequency. BTW, it is fun to hear the strobe lights from aircraft: these are very strong and can be copied well off the direct path by scattering.

My next immediate priority is to change the optical beacon TX so that I can use a range of different sub-carrier frequencies all derived from an HF crystal divided down with a 4060 divider. This will also allow me to run a continuous signal which will help with alignment and I can avoid QRM by moving the HF crystal frequency if needed. I could also arrange DFCW modulation by FSK keying the HF crystal: this will allow a continuous signal for audible alignment yet be detectable with software packages like Spectran in QRSS3.

As regards the VLF earth-mode tests, for now I am going to draw these to a halt and will try again in a month or so when I hope the fen soil conductivity has reduced. If things are unchanged then I suspect that something in the utilities metalwork out in the fens has (permanently) changed.

12 Feb 2012

Successful non line-of-sight 481THz test tonight by cloudbounce

QRSS3 signal at 3.6km by non line-of-sight cloudbounce
Armed with my simpler QRSS3/CW beacon (see earlier post) I did a very successful non line-of-sight (NLOS) cloudbounce test this evening using my 1W red LED in 100mm optics (run at 340mA). TX was my "G3XBM" message in QRSS3 (3 second dots CW) at 820Hz subcarrier.

With the beacon aiming out through the double glazed shack window at nearby Burwell windmill (as an aiming point) I set off for a road at Landwade which was 3.6km away "over the hill" and on a NLOS path from here. At Landwade I set up the 100mm optics and my variation of the KA7OEI head feeding into my laptop running Spectran. Immediately I got a good signal from the beacon 3.6km away. Signal was around 10dB S/N in 0.67Hz bandwidth. The signal was neither visible as a red glow nor audible in the earpiece despite listening quite hard and panning around for best signal.

This was my first proper NLOS test and it is extremely encouraging. I did try to elevate the RX to higher points in the sky but best reception was with the optics aiming at the lights of Burwell village in the distance i.e. as low as was possible in elevation. At the TX end I was aiming to just clear the slight rise in ground to the east of me near Burwell windmill.

Weather conditions were light patchy low cloud with pretty decent visibility. I did notice QSB as cloud cover varied.

I'm really lucky finding this test path as I can put the TX beacon on the bedroom shack windowsill and fire towards the windmill. In daytime I would be able to align the RX better as I was having to guess the best direction with only Burwell church visible. I had to tweek the alignment to what I thought was the right direction. I did not spend a lot of time trying to peak the signal and better copy is possible.  In all honestly I did not expect this test to be successful.